
AESTHETICS OF CODE
Cynthia Li

Submitted to the Department of English of Pomona College in partial fulfillment of the
requirements of the Senior Exercise

Spring 2023

Faculty Readers:
Kara Wittman

Joseph C. Osborn

acknowledgements

To my readers and the faculty who listened to and egged on my multidisciplinary

rambling: Kara Wittman, Joe Osborn, Lucas Bang, stef torralba. I often feel that my mixture of

backgrounds is unwelcome and alien. Thank you for letting me talk about technology in

literature classes and critical theory in CS classes, allowing me to make a mess of your various

departments, and encouraging the weird mishmash of knowledges this thesis indulges in. Prof O,

here’s to many more games of Turf War. Woomy.

To my kid sister Carolyn, no matter how sporadic our Facetimes get, even though you’ll

probably never read this. Thanks for all the duck videos.

To my dear friends, in Claremont and farther away; in particular, Alyssa Zhang, Matt

Gonzo, Caroline Kim, E. Stultz, Héctor, the Pals of Delight, the Microwave, the splort zone.

Your company has been much cherished throughout this past year. I owe you everything.

table of contents

acknowledgements

preface: In defense of code 1

chapter 1: What is style? 7

chapter 2: Code as relation 19

chapter 3: Code as play 32

bibliography 51

Li 1

preface: In defense of code

This is a thesis about code style: about reading code like literature for aesthetic

enjoyment, about how we write code, and about what decisions go into a judgement of its

quality. It’s a somewhat niche topic for an English thesis. I’ve lost track of the number of people

who ask me if I’m writing it for a computer science major, or get confused about what I’m

studying. I tend to work between these two disciplines, programming with the tools and

vocabulary CS gives me while using the language and theory my literature background trains me

in to deepen my understanding of those processes. I find that to my peers in literature or other

humanities fields, computer science is scoffed at or considered utterly incomprehensible, while

to my peers in computer science, critique is unnecessary and excessive. But with the proliferation

of tech—with ChatGPT purporting to mimic human speech, with online ads and tracking, with

the turn to Zoom and remote work spurred by COVID-19—we can no longer afford to treat

computers as incomprehensible black boxes.

It’s increasingly valuable to know how computers work in the modern day. A myriad of

factors push us toward fluency in the language of machines. We’re asked to learn to code by

White House initiatives like Computer Science for All, kindergarten curricula, and economic

pressures that suggest software engineering as one of a shrinking number of jobs that might offer

financial security.1 Annette Vee notes the way the logics of programming are swallowing

everything around it; computers today are ubiquitous.2 We send emails, type in Word documents,

and browse the Internet daily. Computer literacy is no longer a niche skill, siloed into computer

science classes. We use computers for data processing, conducting surveys, creating graphs,

searching PDFs, accessing archives. Enrollment in computer science classes has skyrocketed

2 Vee, ibid.

1 Vee, “Introduction”

Li 2

over the past decade.3 And it’s not just software developers learning to code—tools used in

programming are relevant in other fields as well. Computer science is growing to encompass a

wide variety of cross-disciplinary interests, generating different ways of writing code to serve

their purposes, not just the very particular needs of software. Conversing with machines is

quickly becoming a necessary skill applied in a wide variety of ways. More than just talking to

machines, software is worth taking the time to understand in full, both the effects it causes when

run, and the conditions of its production.

We’re increasingly positioning code literacy alongside textual, financial, and social

literacies. The term “literacy” stresses an obligation to learn that skill. To have code literacy is to

be a better, moral citizen, capable of navigating modern life.4 Reading and writing code is not

just a fun hobby or a professional skill—it’s rapidly becoming an everyday necessity. Literacy as

a term was first used to refer to the ability to read and write, arising in the 1700’s, as printed texts

were disseminated and widely spread expecting reading.5 As texts were written and dispersed

with quill, then the press, then typewriters, then telegrams and telephones, writing (and by

extension literacy) continues to be linked to technology. This makes the jump from

literacy-as-technological to coding-as-literacy a smaller one than necessarily expected. Analogies

to computer literacy and reading/writing literacy have consistently been made over the history of

computing pedagogy. Vee in particular notes an analogy from John Kemeny, who argues that

computing should exist across the curriculum just as writing should.6 These practices are

repeated rhetorically linked, but their methodologies remain distinct. However, if we’re to

6 Vee, ibid.

5 Vee, ibid.

4 Vee, “Introduction.”

3 Camp et al., “Generation CS.”

Li 3

introduce programming to the whole curriculum, letting code touch various other ways of

working with information, perhaps it’s inevitable that these practices should collide. Writing in

computer science is very different from writing in literature and critical theory. Similarly,

computation will change how we do literary work, and literary fields will understand computers

differently, rooting code in a very different context and tradition of knowledge production.

As is the nature of cross-disciplinary work, literature and computer science have wildly

different vocabularies to describe their respective objects of study. Here, I define some

programming terms that I’ll be using in this thesis. These definitions are not set in stone; some of

them are debated and used flexibly across computer science. However, I’m setting down these

definitions as a guideline for how I’m engaging with code throughout this thesis.

Code itself is a way for humans to communicate with machines. It’s used to express a

way of completing a task using the language of the computer. We create tools that facilitate that

communication with the computer, as well as human readers of our code. Those tools are called

programming languages. I use a more flexible definition of “programming language” than usual

here—a programming language, here, is a set of rules that dictate how a computer works.

Programming languages also detail what rules code has to follow in order to be understood, or

“parsed,” by the machine: a semicolon at the end of the line, how functions are called, how

whitespace is handled, how indentation should work. Some of those rules are mostly arbitrary,

primarily chosen for aesthetic purposes; others reflect core principles of the programming

language in question. An algorithm is a series of steps for completing a particular computational

task, sometimes described in code, but often also in natural language. The communications

produced by programming languages, combined in a file to do something, are called “programs.”

I use this term somewhat interchangeably with “code,” though “code” might refer to shorter

snippets of programmatic language, while programs are more cohesive documents. I also

Li 4

consider “program” more appropriate for code that’s being run, doing something on a machine.

Your web browser, file browsers, Powerpoint, and your operating system itself are all programs.

But if you opened up the files those programs are stored in (“Firefox.exe,” for example), you

would see very little text you could recognize as code. The act of translating programs from a

human-readable form to a machine-readable one is called compilation.7 And finally, when we run

a machine-readable program, code is executed—it’s done something to the machine it’s been run

on.

Ultimately, computer programs describe ways of doing things. I am interested in the

nitty-gritty of how we make choices about expressing various series of operations beyond

so-called “pure” functionality. Fields like rhetorical code studies and critical code studies look at

how code makes arguments to its users, presenting particular worldviews to be encoded in

algorithms. In “Rhetorical Code Studies,” to describe the scope of his work, Kevin Brock points

specifically to “the set of rhetorical qualities and capacities of code,” “the discourse surrounding

the development and use of code,” and “the set of social, cultural, and historical contexts that

facilitate its composition, dissemination, and critique” as objects of study.8 However, while style

and rhetoric are linked, I care less about the aspects Brock describes than the more minute details

code carries with it. Why indent here? why use this language, paradigm, data structure in

particular? These choices are rhetorical ones at times, but they also reveal understandings of

code that aren’t only about its function but also its aesthetics—not just code, but good code.

This approach to code style is also distinct from the notion of stylish machines. Many

people ask me about large language models (LLM) like ChatGPT, which are trained on massive

amounts of data and spit out text that tries to sound human, when I tell them about this work.

8 Brock, Rhetorical Code Studies.

7 This is a simplified version of this process, but it’s detailed enough for our purposes here.

Li 5

However, I’m writing less about machines that speak than the humans who write code that makes

them speak. I’m interested more in the choices of humans than the choices of a massive program

that attempts to mimic human speech. While the text LLMs generate is derived from human

writing, these models are more accurately huge probability machines than writers of anything

intentional or usable. Allison Parrish goes so far as to claim that “language models can only

write poetry”: their output can never be considered a speech act.9 She gives the example of an AI

outputting the text “class dismissed” during a lesson—that utterance cannot dismiss the class,

putting it into a genre of text that does nothing, just as poetry does.

In contrast, human-written code almost always does something. I’m interested in the

poetics of text that does do work. I want to bring to attention the programs that cause ChatGPT

to run, the people who wrote scripts to scrape the web for data to train that program on, the lines

of code where someone decided: this is how exactly I’ll describe the algorithmic steps in my

head in the language of the machine. Here are the particular codes I’ll use to say what I mean,

and here’s how I imagine the machine to work—do you understand? I prefer thinking about the

materiality of code’s production, of the ultimately human labor that makes these machines run.

Despite my best efforts, these terms might seem foreign and unfamiliar. In “On

‘Sourcery,’ or Code as Fetish,” Wendy Hui Kyong Chun notes that while learning to read

programs “supposedly enables pure understanding and freedom,” but also that “tellingly, this

move to source code has hardly deprived programmers of their priest-like/wizard status.”10 From

a non-computer science perspective, this description of “wizardry” may seem intimidating. My

tech skills are often viewed as some sort of magic by my peers in the humanities. This thesis is

10 Chun, “On ‘Sourcery,’ or Code as Fetish.”

9 Parrish, “Language Models Can Only Write Poetry.”

Li 6

written for both a technical and critical audience (primarily the latter)—if you’re reading from

one field and not the other, there may be unfamiliar terminology, modes of writing, languages.

The approach I’m taking is less about perfectly understanding what a program does, but

about the experience of writing, reading, and otherwise interfacing with code. micha

cárdenas—in her book theorizing trans of color poetics, Poetic Operations—points out that

to understand algorithms, you do not need to be a programmer. You can also understand

an algorithm as a recipe. A recipe has ingredients and steps, just as an algorithm has

variables and instructions. Think of the algorithm for cooking chicken: get the chicken,

oil, spices, and a pan. Preheat the oven. Oil the pan. Put the chicken in the pan. Spice the

chicken. Put the pan in the oven.11

Not all structures in programming might map cleanly onto this analogy, but the idea’s the same:

programs offer a language through which we can describe how problems should be solved.

Sometimes that language is catered to technical specificities of computer work, digging into

memory safety or multithreading, but much of the time it’s more like a

choose-your-own-adventure book. We follow recipes, we knit, we give out instructions, we use

spreadsheets. Nowadays, we even interact with computers daily out of necessity. These modes of

encoding information are ways into understanding coding for computers. We are all familiar with

programs and algorithms. When I talk to friends who don’t study computers about code, I find

that it isn’t as mysterious and enigmatic as they may first seem. It may take more effort to

understand if you’re not used to the language and styles of both these disciplines; for this I ask

your patience. I hope to hold both my knowledges together, letting them work with and on each

other. As they settle, necessarily there will be debris. Please pardon the construction.

11 cárdenas, Poetic Operations.

Li 7

chapter 1: What is style?

For poetry makes nothing happen:

W. H. Auden, In Memory of W. B. Yeats

Decoding a poem is not always easy, its meaning often remaining elusive.

Poem-ing code to the contrary goes automatically, like magic.

Jan de Weille, “This Code = this code”

cárdenas makes programming into a cooking analogy, but we already talk about how we

manipulate computers through a metaphor of language. I’ve already casually invoked this

metaphor: we “write” using programming “languages,” which have “syntax” and “grammar.”

The language we speak of is an abstraction over the manipulation of silicon and electricity that

happens at a hardware level of computing machines. Sitting at a keyboard and typing into a text

editor is far from the only way of producing programs, but it’s the mode that decades of

computer science (and longer, of the printed word) have decided should be dominant. Ian Arawjo

traces the way we construct the act of programming through the interfaces of type and

computers.12 We consider programming a linguistic endeavor because of a long history of

technologies that bind writing and computation together. In this thesis I seek to push this

relationship as far as possible, treating code as a written object just as we look at prose or poetry.

But code is a different genre from both those categories. It’s text that works, that when run,

produces some output, pushes bits around on a machine, or makes something happen—send an

email, tick up numbers in a bank account, suggest the most likely next set of words.

Of course, code differs formally—in multiple senses of the word—from other mediums

of communication. In literary terms, code takes on different shapes than those seen in prose or

12 Arawjo, “To Write Code”

Li 8

poetry, abiding by different organizational rules. Where prose has its paragraphs and poetry has

stanzas, code sections itself off into blocks marked by indentation or brackets. Computer science

uses “formal” to mean something that can be precisely described to produce the exact same

result over and over. Often, this means defining a vocabulary in a very particular way that can be

mathematically understood and repeated, rather than in one that matches up with the fuzzy

intricacies of natural language. Code written according to a set of rules which can be described

formally. We can talk about the form of poetry (using terminology to describe rhyme scemes,

meter, alliteration, etc), but code’s formal regulations are much stricter. Poets can break or bend

the rules surrounding a poetic form. In contrast, programmers must follow the rules set down by

the computer or their code will not run, unable to be understood by the machine. However, that

doesn’t mean we have to set it apart from poetry and prose entirely.

Treating code as akin to literary writing allows us to imagine it as a creative medium, not

just one that’s meant to perform labor. It gives us room to consider aesthetics that flower above

the purely functional. Other modes of programming do exist beyond written ones, such as

drag-and-drop languages like Scratch, using hand gestures when playing Wii Sports using the

handheld remote, or even simply navigating a computer with a mouse and keyboard. These three

interfaces all are ways for humans to communicate with machines—they give a computer some

inputs with intent behind them, and the computer reacts. The fact that code is written rather than

gestured, played, or drawn is not a coincidence. There’s a history here: Western writing and print

strongly influence the way computers are designed. ASCII characters, the tiny subset of

characters meant to handle the Latin alphabet and punctuation, are most highly prioritized in

computing and in digital software in general. Western print assumes that text is written and read

from left to right, that characters will not be modified after being printed by cursive or ligatures,

that words are separated by spaces. These assumptions are built into a great deal of modern

Li 9

software, which goes on to treat Latin-alphabet text as first class. We use English as the lingua

franca of code solely because of colonialist technological precedent. But surprisingly, despite

this, there isn’t a strict formal definition for what counts as a programming language or code in

computer science. The one I’m using is purposefully broad, but because this thesis focuses

specifically on the aesthetics of language, I’m limiting the main focus of this project to programs

that are readable as text.

I also focus mostly on code that’s written, rather than what code in its compiled form,

when it’s run—although the two cannot be reliably untangled from each other. What’s intelligible

to machines is often incomprehensible to us, and vice versa; code straddles the two. Code never

stands alone. A piece of text being called code implies its compiled form, where it’s actually

being run, or an intent to do something on a machine. However, the act of expressing what a

programmer imagines to be the solution to a problem, then putting that on paper—or typing it

into a digital document, at least—is distinct from what happens when a program is run.13 Chun

writes that “the goal of software is to conflate an event with a written command,” but code

cannot be mapped one-to-one with a running program, which operates in an operating system

running many other processes and interacts with physical hardware and electric signals on the

machine.14 By focusing on code’s primarily human-facing, I’m primarily concerned with the way

code is read and understood by the people who interact with it. The effects that code has on

people when run is valuable to critique, but is simply not what I am interested in here.

���

If coding is about writing, then critical work is arguably about reading, looking at what writing

does at various scales, at the level of the word, sentence, paragraph, chapter, novel, literary

14 Chun, ibid.

13 Chun, “On ‘Sourcery,’ or Code as Fetish.”

Li 10

movement. Coding has units, too: statements, functions, programs, libraries. We can read at all

these levels, but we can start with a program. This one’s written in Python:

1 flavor = input("what's your favorite ice cream flavor? ")
2 if flavor is "chocolate":
3 print("that's mine too!!")
4 else:
5 print("mine is chocolate, but I'm sure that's delicious too.")

The same program in a different language, Java, might look like this:

1 import java.util.Scanner;
2
3 class Main {
4 public static void main(String args[]) {
5 System.out.println("what's your favorite ice cream flavor?
");
6 Scanner s = new Scanner(System.in);
7 String flavor = s.nextLine();
8 if (flavor.equals("chocolate")) {
9 System.out.println("that's mine too!!");
10 } else {
11 System.out.println("mine is chocolate, but I'm sure
that's delicious too.");
12 }
13 }
14 }

Both these programs use the same steps: they print the text “what’s your favorite ice cream

flavor?”, read a line of user input, then check if the answer was “chocolate.” If so, it tells you

“that’s mine too!!”, or “mine is chocolate, but I’m sure that’s delicious too” otherwise. The

alternate paths that hinge on the answer of the question are described through an if statement,

marked by the keywords “if” and “else” above. If we wanted these lines of code to repeat—for

example, if we wanted to ask “what is the best ice cream flavor?”, refusing to let the user

continue until they answered “chocolate”—we would use a loop, returning the program to the

first line of the code inside the code block until a particular condition is reached:

1 while input("what's the best ice cream flavor? ") is not
"chocolate":
2 print("wrong.")
3 print("it sure is!")

Li 11

Here, we read the user input and check if the answer is “chocolate” or not. If not, we print

“wrong.” then ask for input and check the condition again. If so, we exit the loop, and print “it

sure is!”.

Dictating the conditions under which particular lines of code should be run is a core part

of programming, called “control flow.” Without control flow, programs would only be able to

execute a bunch of commands in strict sequence, then exit—but we need programs that keep

running until asked to close and that can reason about varied conditions. Almost every

programming language has ways of manipulating control flow, and certainly every commonly

used one has if statements and loops, at the very least. These are the structures that build up the

forms of programs. Through these building blocks, we’re able to more easily break apart the

pieces of what these programs are doing. We can identify patterns running through code by

looking at the core pieces of control flow.

I return to the first two code snippets juxtaposing Python and Java. While both have the

same structure, the Java program is significantly longer. Whole lines are saved just for a single

bracket (lines 12–14). There are significantly more brackets, too, boasting four pairs of curly

braces where the Python program has none. The condition of the if statement on line 8 is also

wrapped in parentheses, while the equivalent line (2) in the Python version has no such

punctuation. And, of course, the Python program doesn’t have semicolons at all, while the Java

version ends each statement with a semicolon (lines 5–7, 9, 11).

These differences in punctuation between the languages exist because of their respective

priorities and the decisions made when designing them. Python seeks to be beginner-friendly,

often mimicking natural language. To meet expanding needs for computing, many modern

programming languages are designed to be more and more like natural language in hopes that

people will be able to more easily learn them. Python uses keywords like is, not, and, and or as

Li 12

alternatives to ==, !, &&, and || respectively. It also avoids curly braces and parentheses, using

whitespace to organize code blocks instead rather than the curly brackets that Java does. This

means programs written in Python are often shorter and less cryptic, potentially making them

more readable. But readability is not natural, but a quality of text created by the aesthetic

expectations we consider normal. That “normalcy” must be taught, through practice and

exposure to standards of what we consider “clear.”

However, Java was made for a different purpose. On line 6 we see a statement that

doesn’t seem to have an equivalent in our Python program, “Scanner s = new

Scanner(System.in);”. This line creates a “Scanner”, which allows us to read input from

“System.in”—or, the characters a user is typing. It turns out that reading user input in a program

is more complicated than we might initially think. Python, with its beginner-friendliness in mind,

wants you to be able to do this quickly and easily, and lets you invoke “input” instead, skating

over the nitty-gritty of how exactly it tells the program what keys you’re tapping on your

keyboard (line 1). It’s such a common task that novice programmers in particular are asked to do

that Python wants you to be able to do it easily. Java’s version of the same task instead points to

a different priority: it introduces one of its core aspects, the object-oriented paradigm (OOP).

OOP describes a world by filling it with various objects, which hold their own data and interact

with and act on each other. In Java, we might say that a “Car” object has a brand, color, and

license plate number, and that someone could give it a new paint job, changing its color. Here, a

scanner is an object that reads from a stream of characters, which in this case is the user’s input,

and “s” is the name of the particular scanner we’ve created. We can ask the scanner to get the

next line of characters with “s.nextLine()” on line 7. Python, again, doesn’t reveal any of this to

the programmer.

Li 13

We can also see that the “System.out” portions of lines 5, 9, and 11 echo the “System.in”

on line 6. If “in” is the user’s input being read by the machine, “out” is the machine’s output

written out for the user. Java hints at this dichotomy of input/output (“I/O”) and reading/writing.

I/O extends beyond reading user inputs to tasks like accessing and editing the contents of files.

As the abbreviation suggests, it’s another action that computers have to execute frequently. In

this particular case, however, Python doesn’t make this connection, opting for something more

easily usable at the cost of obscuring the computer’s model of its internal functions, and

relinquishing more fine grained control. These programs might do the same thing, but differ

because of the programming languages I wrote them in. That choice of programming language

partially dictates what aspects of this program are emphasized, and what others are handwaved

away. This economy of attention means some aesthetics, as well as practical and rhetorical

functions, of code will be easier to achieve than others. Writers may push the boundaries of this

syntax, but ultimately, those restrictions are something you want for your project.

These two examples are simple, but just changing the language they’re written in reveals

various priorities of their respective languages by showing off what’s easy or natural to write. In

Exercises in Programming Style, Cristina Vidiera Lopes explores how these priorities are

expressed through code by rewriting the same programmatic task over and over.15 Unlike the

variants I show above, she only writes in Python, revealing a wide array of styles that a single

programming language can be wrangled into expressing. Lopes offers a cursory definition of

style as writing under constraints, however in- or explicit those might be. For example, the

English language itself provides us with a set of affordances and grammars, however unnoticed

we might find them. On the other end of the spectrum, Oulipian writers list out their constraints

15 Lopes, Exercises in Programming Style.

Li 14

very explicitly, writing within strictly-set rules: don’t use the letter e, the only vowel you’re

allowed is “a,” rewrite the same story 99 times. It’s from this tradition that Lopes writes her

exercises. She explicitly links coding to writing prose.

Following Lopes, I focus on style in computational writing specifically because code is

written by humans. Our modes of expression are anything but binary, and chafe against the

limited vocabulary and syntax of code. Therefore, to squeeze natural language into the strict

rules of programming languages means we eschew much of the variety that lets our voices shine.

However, we also manage to reach for a multitude of methods of self-expression (as Lopes does)

within those restrictions—ones that are purely aesthetic. When a program is run, the stylistic and

aesthetic choices a programmer made when writing that code practically disappear in the

executed output, swallowed to make sense for the machine, which can’t parse most

human-written code directly. Machines may understand subtle differences between stylistic

choices at the machine language level, but those differences are all-but invisible to people

viewing the effects of that code, unable to perceive differences on the tiny scale of the computer.

Style, then, becomes a mostly human-facing element of code, meant to be read, not run.

Therefore, before discussing style in code, I want to first offer an overview of writing about

literary style.

���

First, perhaps the more widely utilized sense of the word “style” refers to a set of grammatical

conventions for authors, usually for consistency’s sake. In The Elements of Style, William Strunk

Jr. and E. B. White advocate for writing that minimizes authorial voice and pushes clarity and

concision over flair.16 The book is a list of maxims for what “proper” writing is, offering a

16 Strunk and White, The Elements of Style.

Li 15

particularly prescriptive and closed view into the English language. Despite this, White does

spend a chapter on writing style in the more literary sense. He repeatedly calls this chapter “a

mystery,” unable to articulate exactly what style is and going so far as to suggest that there’s “no

satisfactory explanation of style.”17 Style remains out of reach, unable to be defined and actively

escaping definition—White describes its rules as “disturbingly in motion.”

The book offers some suggestions for what good literary style is, focusing on the sound

and syntax of text. The former is centered around sounding natural and fluid. White rails against

the clunky and overthought; in fact, simply writing with too much attention to style is

detrimental to a piece of writing. Style has to come without thinking—content comes first, and

style rises from it unbidden. Still, the sonorous quality of style is the only reason White seems to

allow breaking grammar rules, insisting that “the question of ear is vital.”18 Style is a product of

comfort with spoken language as well as written, and that speech should be natural, correct, and

fluent. Like the sound of written words, syntax isn’t meant to stand out. White declares that

“…when you become hopelessly mired in a sentence, it is best to start fresh; do not try to fight

against the terrible odds of syntax.”19 Grammar must be battled to come out with your intended

meaning, and content and structure seem at odds with each other.

White privileges the former over the latter. For him, the writer’s ideas are more important

than the material conditions of their writing. This separation from context refuses to engage with

the author alongside their text, as though all writers operate from the same position. The English

language itself presents an epistemology, however invisible and embedded in a so-called

universal standard. Yet standardized grammar is a relatively recent invention, grammar books

19 Strunk and White, ibid.

18 Strunk and White, ibid.

17 Strunk and White, ibid.

Li 16

only really arising in the late 1700’s, which produced a slew of “standards” for grammar that

caused confusion as rules conflicted.20 Today, even under a purportedly “standard” set of rules

for grammar, language that disrupts standard American English then becomes a site for alternate,

non-standard styles—for immigrants, speakers of African American Vernacular English, and

speakers of the many dialects and creoles of English around the world. Style is produced not just

by fluent speakers of a language but by those who talk outside of a standard.

Strunk and White emphasize briskness and practicality in formal English writing. But

while clarity is valuable, it’s not necessarily the end-all, be-all of style. Style extends beyond

grammatical “correctness” and Strunk and White’s insistence on “clarity” above all else. In “The

Aesthetic Structure of the Sentence,” William Gass posits that style is in part created by the

distance between words through formal elements—grammar and syntax.21 He asks, how many

syllables, words, clauses stand between two elements of a sentence? Sentences then become a

web of positions, and as such, relations, since something cannot be situated in a place without the

context of what surrounds it. Gass notes, however, that “‘The man at the door was an

encyclopedia salesman’ and ‘The dog at the door was a Doberman pincher’ have the same

grammatical form as ‘The flea on the dog was a nervous Nellie.’” In other words, form can’t be

the whole story. He points, also, to connotation, sound, rhythm, and meter as aspects of style.

These aspects concern themselves with the sensoral experience of these words, of affect and

mouth shapes and auditory sensation.

Notably, neither of these are focused solely on content, on meanings, yet are aspects of

how style is decided nevertheless. Roman Jakobson points out that the repetition of rhyme and

meter (as well as the breaking from established patterns) draws attention to meaning, suggesting

21 Gass, “The Aesthetic Structure of the Sentence.”

20 Watson, “Introduction.”

Li 17

a link between particular words. He writes that the imposition of formal properties on the

meaning of a sentence “gives the experience of a double, ambiguous shape to anyone who is

familiar with the given language and with verse.”22 Style exceeds meaning and content, spilling

over into meaning. They reveal what the priorities the authors had, and what they wanted to draw

attention to, subtly coloring the flavor of an argument. From the field of anthropology and art

history, Meyer Schapiro describes style as a formal quality of creative work rather than being

tied to a particular material, technique, or subject matter.23

Notions and norms of style in English cross-pollinate into and influence standards in

programming, even though programs are notably distinct from prose (which I discuss in chapter

2). One way of understanding code style mimics Strunk and White in describing conventions that

seek to make code understandable and maintainable. Understanding and clarity are emphasized

even more strongly in programming style guides like The Elements of Java Style, a book for

writing in the popular programming language Java, mimicking the prescriptive and inflexible

approach to language Strunk and White lay out.24 Some of these rules are specific to the

particular features and syntax of Java, and others are more language-agnostic. The much more

limited scope of Java’s semantics compared to natural language means that some of the advice in

this book is only applicable when writing this language, not necessarily programming as a whole.

As this style guide reveals, not all code that gets you a “correct” result is the best code.

Code style tends toward usability and practicality, concerned with how fast and accurately code

solves a problem, or how well readers can understand it. Writing code requires constantly

making tradeoffs about how a problem should be expressed such that it can be solved, and that

24 Vermeulen et al., The Elements of Java Style.

23 Schapiro, “Style.”

22 Jakobson, “Closing Statement.”

Li 18

the computer can accurately interpret its instructions. These goals are common in industrial

contexts, where code must be used at scale, and wide-ranging user experience and runtime are

crucial.

A strict notion of style may be backed up by style guides, but there’s still wiggle room in

code for personal preference. If we look at pedagogical takes on what makes a piece of writing

“good,” we’ll find inconsistencies. Patrick Sullivan finds that different instructors can give

papers wildly different grades depending on their own criteria for “good” writing.25 In fact, he

quotes Pat Belanoff, who goes so far as to call these differing expectations for writing “a sign of

strength, of the life and vitality of words and the exchange of words.” Similarly, code style is not

set in stone, and a programmer might prefer specific styles of organizing ideas and formatting

their code that another might hate. The code styles that Lopes lists demand attention in different

aspects of the coding process, from memory management to error handling to functional

programming styles to succinctness.26 Each style she chooses makes us perceive the resulting

program in a different way. Style, then, offers a way into discussing code beyond “correctness.”

Code becomes a text that does work even when a program isn’t running. To study code style is to

observe the way we present our ideas to machines, but just as importantly, each other.

26 Lopes, Exercises in Programming Style.

25 Sullivan, “An Essential Question.”

Li 19

chapter 2: Code as relation

If Lopes describes programming styles as restraints on code writing, she gives less

attention the question of how these styles and restrictions start to arise. I’m interested in this

question because stylistic choices have the power to attract and push away certain writers, to

align with rhetorical and aesthetic movements. Meyer Schapiro points out that in art history, style

is a “criterion of the date and place of origin of works, and as a means of tracing relationships

between schools of art.”27 If style is relational, then one way it might matter is through the

different movements and understandings of code it stands in for.

As a case study, I look at the Rust programming language, a relatively new systems

programming language focused on memory safety and speed—two areas of concern that often

seem at odds with each other when coding, a contradiction I’ll touch on later. In recent years,

Rust has seen wider adoption and gained a higher profile,28 and for the past seven years, it’s

consistently maintained the top spot on Stack Overflow’s most-loved languages list.29 This

well-loved status comes from its particular priorities, but also the support that the core language

team offers to coders. Rust has easy-to-read error messages built into the compiler, detailed

documentation, and a wide suite of tools that make writing the language easier.

A programming language is part of a rich, interconnected ecosystem of tools that support

writing code. This includes the compilers that do the actual conversion of code to machine

instructions, but also other programs used in the code-writing process. Linters and code

analyzers detect errors ahead of compilation and suggest idiomatic code, or, code that follows the

conventions of the language. We previously touched on how programs may contain valid code

29 “Stack Overflow Developer Survey 2022.”

28 “Rust Survey 2021 Results.”

27 Schapiro, “Style.”

Li 20

that the compiler understands, but that more factors than validity and correctness affect what

makes a piece of code “good.” Above the rules of syntax lie a fuzzier communion of norms

produced by the people who write a particular programming language; many of these norms are

supported and distributed through tooling. These tools are built into code editors, distributed on

the Internet, and designed and discussed by programmers.

I choose Rust specifically because it’s a language with a notoriously high difficulty

curve.30 Rust is well known for its commitment to the memory safety of languages like Java and

Python as well as the speed of C. C puts the burden of making sure programs are safe on the

programmer rather than using techniques under the hood to make sure the program will always

be safe. By “safety,” I mean making sure a computer’s memory isn’t read and written to where it

shouldn’t be. If we imagine computational memory as a paper, reading and writing to memory

would be analogous to finding a space to put a new sketch, or looking for a specific drawing. The

computer on its own has no idea what memory belongs to what data: the paper doesn’t know

where one drawing ends and the next begins. Safety means keeping each drawing separate,

making sure old drawings aren’t covered up by new material, and ensuring that we don’t

consider two separate sketches the same one. In C, where speed is the priority, it’s up to the

programmer to calculate ahead of time how memory should be allocated and freed—determining

what pieces of the page are taken up by what, and sticking to those boundaries. Unfortunately,

memory doesn’t have a graphical representation as a physical paper does, making it difficult to

reason about, and very easy to get wrong. Java and Python, on the other hand, handle memory

management in the background, taking on the responsibility of safety. These methods often lag

behind C in execution speed because they have to be monitored continuously while the program

30 It’s also one of my personal favorite languages.

Li 21

still is runnning. C doesn’t carry out these checks at runtime, assuming that the programmer’s

taken care of it—at the cost of needing to be extremely careful about what code you write,

risking a wide variety of errors that safe languages don’t need to worry about at all.

In chapter 1, we saw a comparison of Java and Python, noting that Python handwaves

concepts in exchange for user-friendliness. This dichotomy has effects on what materially

happens when we run code. Usually at small scales, the effects are negligible, but when scaled

up, languages with higher levels of abstraction are often slower and use more energy than other,

lower-level languages.31 Abstraction obscures technical details, often to make that language

easier to write, but it also makes it more difficult for a computer to understand, taking longer and

more energy to run. Rust, however, wants both safety and speed. The safety guarantees Rust

provides means that many of its features are unique to the language, and are often difficult to

internalize for people just picking it up. For example, all variables in Rust cannot be modified by

default, requiring the keyword mut to allow them to be modified. In general-purpose languages,

the ability to change your data after you declare them is usually taken for granted. Immutability

is a common quality of functional programming languages, which are often more esoteric and

the domain of academics and type theorists rather than software engineers who ship software

products. Rust beginners also often struggle with the borrow checker, or borrowck, a concept that

simply doesn’t exist in other programming languages. Other languages wholly lack the

vocabulary for some of Rust’s most central concepts, which in some ways evens the field for all

of its learners: everyone has to wrestle with learning how references and ownership work,

regardless of how much experience they have.

31 Pereira et al., “Energy Efficiency Across Programming Languages.”

Li 22

Rust uses references as fancy pointers that allow memory safety to be reasoned about at

compile time. borrowck ensures that in safe Rust, all data has no references pointing to it, any

number of immutable references pointing to it, or only one mutable reference. It imposes

language-level rules to reason that a program is safe before any code is even run. This decision

stands in stark contrast from languages like C, Java, or Python, which are all popular beginner

languages taught in introductory programming classes.32 Rust trades familiarity with other

languages’ semantic norms for an effort to ensure its goals. It doesn’t shy away from difficulty of

learning, and insists on making programmers aware of work that’s abstracted away in

higher-level languages, and difficult to manage in lower-level ones. Rather than emphasizing

ease of learning or speed of writing, Rust asks its learners to slow down and invites them to

engage with what’s going on under the hood. In a world focused on constant forward progress,

languages that value a slower cycle of editing and reflection are rare. Rust is much stricter than

Python, which is a popular beginner language; many of the things Rust considers compiler errors

are accepted by Python. Rust simply won’t accept some programs that are perfectly viable in the

latter language. This means writing Python is faster—which is useful in many

circumstances—but also liable to host a much wider variety of bugs. In contrast, Rust values

correctness and careful consideration over speed. Language design is a commitment to a certain

kind of pedagogy and ideology, providing a model of how a language imagines the workings of a

computer.

Because of these differences, Rust is often regarded as difficult to learn, with a high

learning curve that newcomers often struggle with. Rust doesn’t settle for compromises on its

goals—instead, it chooses to offer tooling to make it easier to understand. These tools are just as

32 Becker and Fitzpatrick, “What Do CS1 Syllabi Reveal about Our Expectations of Introductory Programming

Students?”

Li 23

critical as the language’s syntax and features itself. The compiler’s design is pedagogical as

much as technical, with a focus on how compilation errors are presented to those writing in the

language. Rust’s difficulty means that much of the time, people writing it will be faced with a

long list of compiler errors that they need to parse, understand, and fix to make rustc accept their

program. Rust makes an effort to make these errors as readable as possible, and its errors are one

of the language’s most attractive features.33

As a quick example, here’s some code that won’t compile:

let x = 3;
println!("x = {x}");
x = 4;

Attempting to run it would net you this error:

error[E0384]: cannot assign twice to immutable variable `x`
--> src/main.rs:4:5
|

2 | let x = 3;
| -
| |
| first assignment to `x`
| help: consider making this binding mutable: `mut x`

3 | println!("x = {x}");
4 | x = 6;
| ^^^^^ cannot assign twice to immutable variable

For more information about this error, try `rustc --explain E0384`.

This rustc output is much more verbose than expected from most programming languages. It also

offers help text to the prorammer, suggesting the addition of the mut keyword, which resolves

the error. Running the suggested “rustc --explain E0384” also presents more information

about the error. In contrast, a similar error in Java would look like this:

Test.java:6: error: cannot assign a value to final variable x
x = 6;
^

1 error
error: compilation failed

33 “Rust Survey 2021 Results.”

Li 24

This is a much shorter error message, showing only one line of code and a terse description of

the error. Rust’s output takes up space, giving more context and pointing to lines of code where

those errors are likely to have occurred. Many programming languages are notorious for giving

particularly opaque errors that novices often struggle to understand. The language of compiler

errors is another code that must be learned when programming. With experience, one grows to

recognize what certain error messages mean, but until then, error messages tend to be left

completely unread because of how little light they shed on what might be wrong with a program.

While notoriously dense errors are the norm in other languages, Rust’s compilation errors strive

to be helpful above all else. They seek to not just point out what’s wrong, but provide searchable

tools and keywords through which a programmer can find further resources.

The core “grokloop,” as Kate Compton names this loop of creation and feedback,34 of

programming is one of writing, compiling, reading, and editing. In Rust, this loop is shortened by

the compiler itself, which gives quick feedback on errors and how to resolve them, facilitating the

“editing” piece of that cycle. It attempts to not put responsibility on a novice programmer to

stumble across understanding via web searching or other resources. rustc’s support is inherently

attached to the compilation process—ergo, it’s nigh-impossible to write Rust code without

encountering its input on your programs. It expects a programmer to come across errors as part

of the coding process. in the process of writing code, Rust plans for difficulty; it takes failure to

communicate as a given. Machine and human languages are difficult to reconcile. Rust doesn’t

shy away from this fact, but instead offers tools to facilitate that communication, from the

compiler errors itself to other external tooling (which I’ll discuss further below). The compiler’s

34 Compton, “CASUAL CREATORS.”

Li 25

attitude toward coding signals that it wants the programmer to succeed, working toward a mutual

understanding of a program on both sides of the parser.

These errors are a pedagogical tool as much as a marker of what needs to be fixed in a

program, facilitating my understanding of the computer’s systems. I had minimal systems

programming knowledge before learning Rust, so my first time writing unsafe code, where the

compiler doesn’t check for memory safety errors and anything goes, was nerve wracking. But I’d

been writing safe Rust and engaging with rustc errors for a good while, so the understanding I

had of memory management was enough to tide me over. Working with Rust’s definitions of

memory safety were sufficient enough to teach me the basics of writing unsafe code without its

safety rails. Rust gave me the vocabulary and confidence to broach a previously intimidating

subject on my own.35 Still, it’s not something I want to do regularly—I’m happy to cede this task

to the compiler.

Rust attempts to have the best of both low- and high-level worlds, but it sacrifices

language complexity to achieve this. Rust takes a long time to understand, and even with a

decent knowledge of the language, it still takes me a while to write it. I rarely write Rust without

running into errors with the borrow checker, with mutability, with types, with trait objects, and

expect the compiler and my tooling to communicate with me when it can’t parse my work. Rust

challenges the notion that we should understand how everything works—its errors allow pieces

of the language to be digested over time, slowly, as familiarity grows with it. Tooling supports a

35 Crichton, “The Usability of Ownership” notes that Rust is over-cautious about safety, and won’t accept all

technically-correct programs. There are many programs that are safe nominally, but cannot be reliably proven

by the compiler to be safe. borrowck won’t always offer an accurate explanation of soundness, which means it’s

not a perfect teacher of what memory safety means.

Li 26

lack of knowing: it expects that a programmer will make mistakes, forget, or simply not

understand, and points them toward potential solutions.

It’s worth noting that the “complexity” here is not necessarily natural. Rust’s difficulty

comes in part from how distinct its expectations are from other languages, which first introduced

this abstraction-performance divide. Rust is only alien because programming languages have not

historically prioritized or given language to the concepts that Rust has. Rust’s tooling, then, acts

as a gateway into the paradigm of coding the language prioritizes. The attention paid to the

feedback programmers get on their work means that this initial hurdle of learning the language is

a priority for the Rust compiler team. Rust is not only its technical language features. It’s also,

crucially, concerned with the whole community of those who write it, from people comfortable

with C and assembly to those who’ve barely scratched the surface of programming, and offers its

companionship at all levels.

Rust’s cautiousness encourages a style of careful, thoughtful programming, paying

attention to details and particulars. It’s this care that drew me to Rust as a non-systems

programmer: its guardrails allowed me to build confidence in the correctness of my programs.

The compiler itself felt supportive of my code-writing process, guiding my way through the

language as a novice. As part of the RustConf 2020 opening keynote, Ashley Williams details

the core values of the project, noting in particular the word “empower” in Rust’s slogan:

…so, as we look at this slogan, “a language empowering everyone to build reliable and

efficient software,” I don’t want you to think that we’ve thrown this “everyone” out… but

there’s a core of it that is true-er, which is: “we are a language empowering everyone, but

especially folks who didn’t think systems programming was for them.”36

36 Matsakis et al., “RustConf 2020 - Opening Keynote”

Li 27

Williams goes on to explain how the term “systems programming” actively keeps people away

from a language because of the stereotypes surrounding it—of techy wizards siloed away from

the world, who mumble incomprehensible tidbits about computers.37 The people who were able

to access this language were often rich, white, male, able to access a university education and the

technology that allowed them to work with computers regularly. Rust separates itself from this

history of systems programming with its tooling, focusing on empowerment of its writers as

much as the power of the language. Choosing a programming language is a stylistic choice as

much as a practical one, carrying more connotations than just the technical features of the

language. It’s a commitment to a particular set of values.

���

While rustc’s errors are fairly comprehensive and well-liked, other tools exist to facilitate code

writing that don’t come by default with the compiler. Rust has an autoformatter (rustfmt) and

language server protocol implementation (rust-analyzer), which format code and allow error

messages to continuously show up while coding, making the grokloop of writing code and seeing

errors even faster. Rust also has cargo clippy, a more complex linter that checks for style and

errors. These tools serve to help programmers write “better” code that aligns with the priorities

of Rust as a whole. clippy comes with more than 550 lints, separated into eight categories, listed

as: correctness, suspicious, style, complexity, performance, pedantic, nursery, and cargo.38 Here

I’m focusing on the first three as the categories most-often encountered.

Lints in the “correctness” and “suspicious” categories handle code that’s very likely to be

wrong or useless, further extending the checking rustc already does and essentially acting as a

proofreader or second bug-catcher. Such lints are relegated to a separate, opt-in tool rather than

38 “Clippy Lints.”

37 Chun, “On ‘Sourcery,’ or Code as Fetish.”

Li 28

the compiler directly—the sheer volume of feedback clippy provides could be overwhelming to a

novice writer. While seeking to be useful, rustc’s errors don’t try to find every possible error. The

language cares about safety and trust, but doesn’t want to turn away programmers because of a

constant negative feedback loop, either. Rust’s power to analyze a program is also finite—there

are plenty of situations it can’t reason about when guessing at a programmer’s intention.

Additionally, putting too many restrictions on a programmer’s style on the compiler side can

wildly limit what’s expected or possible to be written. Rust is a general purpose language, meant

to facilitate a wide variety of use cases, and encoding too many patterns as erroneous can shut off

cases that perhaps wanted to be left open. Therefore, clippy’s lints are opt-in: it’s well-known

that its warnings are annoying, and those who use it actively agree to let it read their code. On

the flip side, if needed, clippy also provides a smattering of “restriction” lints, which detect

patterns that may not be inherently bad, but sometimes helpful in very particular situations.

Furthering the default compiler’s role as a pedagogical tool, some lints are less generally

applicable to programming at large, but instead provide suggestions for methods in the standard

library that work as shorthands for the desired semantics. option_map_or_none, for example,

suggests the method _.and_then(_) instead of the pattern _.map_or(None, _). The standard

library’s documentation is lengthy, making it difficult to search for one specific function. Will

Crichton, looking at the usability of Rust’s memory model, points out that it’s unlikely to know

every semantic tool you have at your disposal as a new user, especially when a data structure like

Vec can have over a hundred associated functions of wildly-varying appropriateness to your

task.39 Searching through all these functions to see which ones fit your task is time-consuming.

Moreover, new users may not even be aware that such functions exist—Crichton notes that Rust

39 Crichton, “The Usability of Ownership.”

Li 29

novices “didn’t think to go looking for a helper function” when writing. Functional

programming, one of the programming styles that Rust sypports and uses, thrives off the

abstraction of patterns into higher-order functions, but this comes at the cost of needing

familiarity with those patterns. Comparing this experience to that of writing proofs in Lean,

Crichton (reasonably) complains that “it’s an excruciating experience to carefully scan the

hundreds of theorems in the standard library.” clippy aids this process of searching by

automatically detecting patterns that can be simplified, actively pointing attention to the

functionality of the language provides while coding. These errors support programmers who are

still learning what Rust has to offer them, as well as programmers who simply don’t have the

bandwidth to remember all these functions.

Meanwhile, style lints are especially concerned with idiomatic code, providing lints like

single_match, which “checks for matches with a single arm where an if let will usually

suffice.” This is done to prevent excess nesting, which is generally considered something to

avoid in many languages—too much nesting often signals with high complexity, and may be

better served by abstracting out into several smaller, easier-to-digest function calls. clippy

adheres to these “best practices,” seeking to make code readable and maintainable. Other style

lints introduce style conventions common in the Rust community at large. The lint

new_ret_no_self would show an error if a method for a type named new doesn’t have a return

type that includes itself. For example,

impl Example {
fn new() { /* ... */ }

}

would trigger this lint, while fn new() -> Self { /* ... */ } would not. This provides

consistency between other libraries in the Rust ecosystem. clippy has certain expectations that

may not be necessary when coding alone, but are necessary the moment programs turn from the

Li 30

individual to a community. As such, using clippy is to opt-in to norms of the Rust community at

large, to interact with a set of values that bloom from but aren’t enforced by the compiler. It’s to

recognize Rust as deeply connected with the people who use it. Style is connected to other

writers as much as it is an act of personal expression.

These practices become engrained in the code style Rust deems “good” by borrowing

norms from other programming communities, and through continued use. As an official tool,

clippy produces and maintains these standards for the larger community of Rust programmers.

clippy is able to dictate what code is correct for every programmer that uses it, actively pointing

out code it deems problematic. Like any technology that attempts to mark out deviance, it holds a

great deal of power—it’s an automated tool that can be utilized to judge if some code is good or

bad, with all the consequences that judgement might carry.

Despite being an obstensibly general-purpose language, the norms of Rust don’t

necessarily match the needs of other coding communities. When working with a friend to define

a formal grammar using a Rust enum, she was frustrated because rustc would warn that enum

types should have capitalized names, while lowercase names were the stylistic norm for writing

formal grammars. The following code:

enum Grammar {
term,

}

gives us this warning:

warning: variant `term` should have an upper camel case name
--> src/main.rs:7:5
|

7 | term,
| ^^^^ help: convert the identifier to upper camel case: `Term`
|
= note: `#[warn(non_camel_case_types)]` on by default

Li 31

This is purely aesthetic. Rust capitalizes types to keep this styling uniform across all code written

in the language, so it’s easy to tell types and functions apart with a glance. Many other languages

don’t blink an eye at what capitalization scheme you use for variable and function and type

names. Rust considers this a warning, not an error—the code still compiles—but it is output you

have to see when checking error output. Someone who wrote this code would continuously get

feedback that it isn’t quite right, despite matching up with the expectations of a different coding

community. Rust simply didn’t have that group in mind when setting those capitalization rules.

“Good” code style differs wildly across communities. A single style can’t work for every case,

but Rust and clippy attempt to set a baseline that meets most needs, for better or worse.

clippy highlights the norms of the Rust community as well as the language itself. To turn

on clippy errors for a piece of code means you’re not just writing Rust for yourself, but for others

to read and understand. By using clippy, we’re forced to pay attention to how other programmers

of Rust write the language, granting us uniformity between our styles so we can make them

legible to each other. This commitment to a particular flavor of legibility means we want to be

read by others in this community. We want to conform to their styles. Because code is often

worked on by teams of people rather than one single writer, having a uniform style makes a

project easier to maintain so that other people can continue understanding it into the future.

Choosing a programming language requires some consideration toward how the goals of your

code align with a language’s priorities, however small that alignment might be. Likewise,

actively opting into a style via tooling and error reporting means considering other readers of

your code, and how easily you want to be understood.

Li 32

chapter 3: Code as play

If Rust’s tools present us with a “proper” or “correct” style for code-writing, we must also

be able to write code incorrectly, improperly, against the norm—to reject the path toward

comprehensibility that Rust gives us. Code that’s “wrong,” that ignores what’s considered

“good” by dominant modes of expression, is still code, and still worth examining for its

rhetorical moves. Turning back to natural language as guide for an aesthetics of code, we notice

that “non-standard” Englishes are often those spoken by marginalized communities: Black

writers using AAVE, immigrants who speak English as a second language or outside of America,

trans voices and their swishy falsettos. These voices draw attention to their orality, to everything

but the content of their messages. We might call these “queer” styles, which break outside of

normative notions of good writing, that love excess and the unnecessary and the frivolous as

much as functionality.

In the prologue to On Freedom and the Will to Adorn, Cheryl Wall describes the

embellishment and flourishes of Black American essayists, stylistic choices that exceed,

overflow, and draw attention to themselves. Wall calls the attention toward essayistic style by

these writers “an enactment of the will to adorn, an expression of an attitude toward language.”40

In writing about experiences with freedom (or of fighting for it), Black writers care about style

and embellishment and beauty as much as content, carrying with them “an understanding that

language did more than convey information.” Even with the urgency of Black protest, these

writers pay attention to style—a seemingly excessive quality of writing that takes up space for its

own sake. The ability to choose to indulge in that stylistic adornment just because a writer can,

regardless of urgency, is one of freedom. All writing is stylish, but here, I highlight writing that

40 Wall, “Prologue.”

Li 33

indulges in embellishment and adornment just because it can. Style offers us a way into a

potential queer aesthetics of code, one that pushes against notions of code as functional above all

else, leaving room for play rather than aiming toward optimization and perfection.

This may seem contradictory. Code’s binaries and structures impose strict empiricisms on

those who might seek to escape discrete categorization. In the hands of hegemonic systems,

computation is often used to harm. For example, to echo Os Keyes, some health insurance

companies might track what food you buy to calculate premiums. However, that data can only be

collected in the grocery stores they can integrate their surveillance systems in. People who do

their shopping elsewhere would escape that data collection, but at the cost of higher premiums.

Alongside the fact that people who shop at the corner bodega are likely poor, immigrants, and/or

people of color, this higher price puts more strain on those who are already struggling to survive.

The cost of unintelligibility is to be shut out of systems that don’t acknowledge or care about

marginalized lives. Keyes observes that a reformist approach to their critique would be to “make

sure there’s a sensor in the bodega too!”41 Reform and inclusion expand the boundaries of who’s

surveilled and pushed into standardization. Conversely, being rejected by the state has very real,

violent consequences, no matter the size of the boxes it shoves people into.

Even when used as a tool to help those in need, computation fails: N. Katherine Hayles

describes Ellen Ullman’s experience creating software for AIDS patients to access information,

and the disconnect she felt when meeting the very real people that software was serving:

Then, as the independent contractor responsible for the system, she met with the staff

whose clients would be using the software. Suddenly the clear logic dissolved into an

amorphous mass of half-articulated thoughts, messy needs and desires, fears and hopes of

41 Keyes, “Counting the Countless.”

Li 34

desperately ill people. Even as she tried to deal with the cloud of language in which these

concerns were expressed, her mind raced to translate the concerns into a list of logical

requirements to which her programmers could respond. Acting as the bridge arcing

between the floating signifiers of natural language and the rigidity of machine code, she

felt acutely the strain of trying to reconcile these two very different views of the world.42

On meeting her clients, Ullman’s forced to realize that the lived experiences of these people

cannot possibly be represented by her software, which—while it may be helpful—cannot care for

the nuances of their day-to-day lives. The analog struggles to be contained by finite, discrete,

cleanly defined options, set by a programmer’s whims and ultimately bounded by the finite size

of a machine’s working memory. Queer existences work against computation and data,

exceeding what systems can be coded to encompass. The friction between the two reveals what

can’t be grasped by computers, what’s unaccounted for and unparseable. As José Esteban Muñoz

writes, queerness is a horizon we’re working toward but can not yet grasp; if our selves can be

represented in an easily computable way, we lose some of our opacity. Amber Jamilla Musser,

following Édouard Glissant, describes opacity as a mode of “always and insistently thinking with

the possibility, however momentary, of illegibility rather than a stabilized notion of resistance”43.

Musser details a resistance based not on mutual understanding, but on uncomfortably holding

space for difference, allowing unknowing to fester.

Édouard Glissant, in “Concerning the Poem’s Information,” suggests that the limitations

Ullman comes across are “useful for suggesting what is stable within the unstable. Therefore,

though it does not create poetry, it can ‘show the way’ to a poetics”.44 Through the stability of the

44 Glissant and Wing, “Concerning the Poem’s Information.”

43 Musser, “Introduction.”

42 Hayles, “My Mother Was a Computer.”

Li 35

machine—the cracks where the unwritable leaks through, refusing to be contained—we might

get a peek at possibilities beyond what computers can capture. Already we can see queer and

trans lives clashing against (but also finding humor) in the ways our identities are

(mis)represented by digital interfaces that expect normative users. We might be indignant that

we’re not offered an accurate gender option on an online form, but amused that the same form

lists “Venezuela” as a proposed third gender.45 To not take this formal mangling of our epistemes

seriously is critical. If we refuse to take computational systems as real, our interactions with

them become a form of play.

This is not simply a digial problem. Even removed from the digital world, we turn to

boundaries to set the differences between each other: terms of identity and categorization, labels

and descriptors, some benign, others harmful. Language, ever imperfect, cannot hope to capture

all ways of being—but we reach for it anyway, attempting to describe our existences in this

world, and jump the gap between each other. Computation exacerbates the systems it was built to

sustain. However, perhaps the grace we give language can be extended to machines, approaching

them with the knowledge that they expose incomplete models of reality. That inaccuracy is

something to be aware of and push against, but there’s also potential to lean into and play with

the ontologies that code brings with it. This capacity for play and worldmaking is a source of

potential for a queer computational style.

This is not to discount the harm that empirical systems cause, nor minimize the way

computed systems exacerbate that harm. These systems are violent and oppressive, targetting the

most marginalized and vulnerable, who are least recognizable to hegemonic understanding. This

is not a call to fold marginalization into discrete, easily digestible categories, where it might be

45 Elden, “Genders.WTF”

Li 36

included into the normative and lose its teeth. Inclusion into structural norms renders queer and

marginalized people legibile, losing our opacity and becoming readable; we want to escape

capture, not to be bound to rigid, slightly-more-expansive categories. We need systems that care

for marginalized people and make space for different possibilities of living, but we also have to

be aware that no system can acknowledge the sheer range of possible worlds that can be built.

The nature of our very language, let alone merely code, means the structure and containment that

comes with speech is near-impossible to escape. Despite this, the way marginalized people push

at the edges of what can be expressed in formal logics is worth paying attention to.

Non-normative users fuck with the formal. Following them, we catch a glimpse of the

assumptions we’ve made and the structures we’re cleaving to in our descriptions of the world.

Queer codes arise from the gaps between what the machine can capture and what we know to be

true.

micha cárdenas describes an artwork by the Peruvian artist Giuseppe Campuzano,

DNI—it’s a national ID card where, depending on the angle you view it at, “the sex marker shifts

from ‘M’ to ‘T,’ for travesti, and the image of his face changes.”46 This ID card isn’t a

computational system in that it doesn’t directly involve a computer, but it was still designed with

computers in mind. cárdenas notes “the seemingly random numbers and ‘<’ signs common to

passports today that make their data more easily readable by electronic scanners” on the surface

of the card. The algorithm—the series of steps that allow this ID card to be made, then

comprehended by technology that seeks to parse the information on it—is one that seeks to

identify people’s genders to the state. Keyes notes that even if the state recognizes gender

changes and nonbinary genders, recognition and recording is still a violence: “it enables control

46 cárdenas, Poetic Operations.

Li 37

and surveillance, because now, even aside from all the rigid gatekeeping, a load of people have a

note somewhere in their official records that you’re trans.”47 Queer possibility demands not a

more inclusive state, but the abolition of its hierarchies and control. Campuzano prods at the

stability of that attempt at identification. She presents her body as something of presentation

maleable, that shifts when you move around it. His gender is mobile, unable to be captured by

the ID card. She reveals the gaps in the algorithm, which allow her to escape. Importantly, he

uses the algorithm itself to present alternatives to the rigid categories it presents, but also moves

beyond those logics to present something about his gender. Campuzano plays with the patterns of

the ID card to create this work of art—one that’s not meant to be used at the border, but reminds

us of it anyway. If used as a legitimate form of identification, the ID card would break the

algorithm even as Campuzano mimics it. Her presentation is one that the ID card won’t and

cannot account for. Trying to represent it using this algorithm disrupts its functionality and

necessitates different modes of representation, ones fluid, ever-changing, and impractical for the

technology of the state. Queer ways of being long to exist outside of the state’s control, and

therefore are partially defined by the field of infinite possibility of what the state is not.

This dissonance is accentuated by the different epistemologies at work when moving

between the computational, the state that uses it, and the marginalized people who interact with

both in precarious and messy ways. There’s slippage between what the computer understands of

a model, what the human understanding of the model is, and reality, which is where queer

possibility thrives—at points where the machine’s model of the world doesn’t match up with a

human one. This might be because a programmer only imagined their software to be used in a

particular way or didn’t realize a corner case existed, or because the way a system was encoded

47 Keyes, “Counting the Countless.”

Li 38

doesn’t actually match up with how the programmer thinks it’s encoded, or a myriad of other

reasons. Computational systems by nature must make decisions about the “ontologies” they

choose to represent because they can’t account for infinite possibility. However, those systems

rarely—if ever—accurately account for all ways of interfacing with them. The moment we

imagine a “normal” user for our programs, or expect a particular way of interacting with code,

we (necessarily) set limits on what’s possible for our systems. This lack of universality isn’t a

bad thing in itself. It’s untenable for code to do everything, and neither do we want all possibility

to be capturable. A coding practice attentive to marginalized people would care for the way our

lives are unaccounted for, and how we navigate our inclusion in, exclusion from, or queering of

those systems altogether.

Tech is not inherently evil, although it’s easily and readily co-opted by pre-existing

systems of power to hurt. It orients us toward the future. Focusing code on functionality and

optimization further supports normative violence, racing forward without bothering to examine

the effects code has on the world. If we leave space for play and failure in our code, we disrupt

that incessant forward movement and create potential for something new. Following Muñoz, we

can’t grasp a queer future in the present because we cannot recognize a new world yet,48 but we

can dream: can technology and code help build and imagine something new? The mathematical

logic that code’s built on allows the construction and theorization of entire worlds, so it might be

possible for it to eschew normative modes of thinking and knowing, and create entirely new

logics of being in the world. This ontological power has been operationalized in violent ways,

but it’s also incredibly compelling. When you can define a new reality in your code, there’s no

48 Muñoz, “Queerness as Horizon.”

Li 39

one true way to solve a problem. We can reject that technology is meant to accurately mimic our

world, and instead create “alternate ways of being, living, and knowing.”49

���

Today, though, the norms put forth by technology fail to consider marginalized people, whether

intentionally or not, letting them consistently fall through the cracks. This failure can be

something as mundane as writing a regular expression (regex) to validate fields of a form, trying

to guess if the inputs of those fields are correct or not. Regular expressions attempt to describe

the structure of a string of characters: in a database search, if you’ve used the * symbol to

represent a “wildcard” character, that comes from regex. One regex could look like

“^[\w\.]+@([\w-]+\.+)+\.\w+$”, which attempts to identify if a string is an email address or not.

This particular regex would match strings that met all these conditions:

1. started with more than one alphanumeric character, a period, or an underscore,

(“^[\w\.]+”)

2. followed by an @ symbol, (“@”)

3. followed by a sequence of alphanumeric characters with at least one period in the middle

somewhere. (“([\w-]+\.+)+\.\w+$”)

Notably, this expression isn’t perfect. It won’t accept email addresses that use certain valid

symbols: email+alternative@example.com is a valid address, but wouldn’t be allowed by this

regex. It accepts some email addresses that are definitely invalid: email@example.invalidtld

cannot be a real address, since the domain “example.invalidtld” cannot exist. The Internet

Assigned Numbers Authority, which coordinates website names across the entire Internet, simply

49 Keyes, “Counting the Countless.”

Li 40

doesn’t recognize “.invalidtld” as a top-level domain, meaning it cannot be registered as the

ending of a url.

This attempt to describe emails is relatively low stakes, but widely used in practically

every signup form you might encounter online. In summer 2020, I have a go at writing this regex

for a form for an event I’m helping run—and get it wrong. Someone contacts me after the form

goes live, informing me that their email isn’t included in the pattern I’ve described. In this case,

that person was able to contact me through other means, and cared enough to bring the error to

my attention. In a different context, that rejection would force someone to spend limited time and

energy dealing with the error that they might not have, and could potentially dissuade them from

filling out that form entirely, leaving them unable to engage with this piece of software.

Attempting to describing this pattern might seem straightforward, but it’s more difficult

than it seems to identify valid and invalid email addresses accurately.50 We might say at first

blush that an email is a username followed by the @ symbol followed by a website, but then we

also have to define what a username or a website looks like—can we only use ASCII characters?

What about non-Latin scripts, like Chinese or Tamil? What about characters with diacritics, like

in French, Spanish, Vietnamese? What about languages written from left-to-right? How would

we write this regex, then? And if emails (which were made specifically for use with computers in

mind) seem tricky to define, this doesn’t bode well for our ability to accurately represent more

nebulous, informally defined categories. In fact, whole websites exist to list ways in which

programs make assumptions about their users—their names, addresses, how their computers

50 Without a formal specification, at least, but that’s an entirely different story. Specifications are documents that

rigidly, precisely define exactly how a programming language should be written and what its semantics are. A

specification for email addresses exists (see Resnick, “RFC 5322 - Internet Message Format”), but they are

technical and jargon-y documents, and likely not the first resource that comes to mind in practice.

Li 41

keep track of time, and more.51 A queer code style might simply not bother with validating an

email address field, knowing that not everyone has an email or wants to share it, or questions

why emails are being collected altogether, wondering if it’s necessary to keep track of that data at

all. A queer code style acknowledges the limits of computation against the infinite possibility of

human existence, embraces complexity, and doesn’t mind doing the extra work to accomodate

that.

These incongruencies between a programmer’s imagination and what actually happens in

a computer’s working memory manifest as glitches and bugs, from the relatively benign to

legitimately harmful. Ian Gilling discusses glitch as a site of computers’ failure. When computers

glitch out, machines become more machine.52 It’s revealed here most cleanly that human logic

falters and struggles to match an epistemology inherently different from ours. Gilling notes that

the glitch demystifies tech, revealing it as flawed rather than sterile and pristine. Glitches draw

attention to tech’s physicality/materiality rather than the patterns of pixels on your screen. They

break the illusion that anything happening on your computer is concrete or natural; they’re a

material side effect of code. They happen when code is run on machines rather than when it’s

theorized about in proofs and papers. The computer unexpectedly speaks here, pointing to its

own agency. Glitches remind us that computers aren’t perfect machines, and we can’t have

complete control over what happens inside our computers. In the act of translation between our

language and the computer’s, meaning gets lost. Our communication with computers is

necessarily incomplete. The abstraction of programming languages smooths out fine detail, but

to know exactly what’s going on under the hood is near impossible. It takes a great amount of

knowledge and skill to understand what’s happening at the lowest levels of computation. People

52 Gilling, “Haunted by the Glitch.”

51 McKenzie, “Falsehoods Programmers Believe about Names.”

Li 42

program in higher-level (more abstract) languages because it’s easier, because it makes

“commonplace” tasks simpler to grasp. Pushing around bits and registers is both often

unnecessary and beyond the expertise of amateurs, and a waste of time to consider. The inner

workings of computers is hidden under layers of silicon and electricity, becoming a black

box—an incomprehensible interiority we cannot get much of a glimpse into. Glitches break the

illusion that the code we write to our machines is completely transparent to any party involved,

and remind us not to take our writing too seriously: we’re all making this up in the end.

Moreover, code itself is a form of language not easily understood. The rigid structures of

programming language in turn produce algorithms incomprehensible, procedures for reasoning

alien even when describing them in natural language. I glimpse here some possibility for queer,

unreadable opacity—lack of understanding thrives in poetry. Jakobson writes that “the

supremacy of poetic function over referential function does not obliterate the reference but

makes it ambiguous” (i don’t have the full citation for this).53 Where other styles of writing ask

for clarity (such as Strunk and White’s insistence on it),54 poetics might prefer visual, semantic,

or audial pleasure over communicating accurately exactly what you mean. For those learning

how to code or who simply have been hacking at a problem for too long and don’t know what’s

going on anymore, just typing stuff into a program and hoping it runs isn’t outside the realm of

possibility. Here, I ask the computer running my code if what I’m doing makes sense, and

evaluate the results it gives me: compiler errors, bugs and crashed programs, miraculously

working executable files. I don’t understand what I’m doing—I’m throwing spaghetti at the wall,

wondering if what I’ll somehow stumble on a working solution based on vibes alone, on what

looks right. That vibes-based approach to a coding practice is by no means sustainable, and

54 Strunk and White, The Elements of Style.

53 Jakobson, “Closing Statement.”

Li 43

rarely results in well-written, easily understandable code—but it’s a style based purely on the

visual. This practice uses the vocabulary of a programming language to build something that

looks like code. I stop writing to convey information, but instead am mimicking the stylistic

qualities of code I’ve already seen.

Here’s a code snippet from an old problem set I did two years ago:

(** **** Exercise: 2 stars, standard (In_app_iff) *)
Lemma In_app_iff : forall A l l' (a:A),
In a (l++l') <-> In a l \/ In a l'.

Proof.
intros A l1 l2 a. split.
- induction l1 as [| h1 l1' IHl1].
+ destruct l2 as [| h2 l2'].
* simpl. intros [].
* simpl. intros [Hl2 | HIn].
{ right. left. apply Hl2. }
{ right. right. apply HIn. }

+ destruct l2 as [| h2 l2'].
* simpl. intros [Hh1 | HIn].
{ left. left. apply Hh1. }
{ rewrite app_nil_r in HIn. left. right. apply HIn. }

* simpl. intros [Hh1 | HIn].
{ left. left. apply Hh1. }
{
simpl in IHl1. apply IHl1 in HIn.
destruct HIn as [HInl1 | Hh2].
- left. right. apply HInl1.
- right. apply Hh2.

}
- induction l1 as [| h l1' IHl'].
+ simpl. intros [[] | HInl2].
* apply HInl2.

+ simpl. intros [[Hha | HInl1] | HInl2].
* left. apply Hha.
* right. apply IHl'. left. apply HInl1.
* right. apply IHl'. right. apply HInl2.
(* if the answer to this one is significantly shorter and less

complicated i will cry. thanks *)
Qed.

You don’t need to understand this. I certainly didn’t when I wrote it55—you can see my comment

at the end telling you just how frustrated I was by the end of my writing it. However, this piece

55 Nor do I understand it any better now.

Li 44

of code uses the various terms I knew were available to me in this particular programming

language (“simpl”, “left” and “right”, “apply”, “induction”, the various bullets and indentations),

and tosses them together to make some program-looking soup. You can notice patterns even

without knowing what this piece of code does. At the beginning of an indented section we often

invoke “simpl”; after applying we add a line break or back out of an indented section like a

refrain. Brackets open and close, and bullet points make pointless lists. We’re directed to go left

or right without really knowing where we’re wandering. If I stop thinking about what these

words mean and simply let the syllables spill out of me like so many sounds, I see structure in

the instruction. Style and meaning are interlocked, but style exceeds meaning. It’s something we

can recognize even if we don’t understand a single line of code. This approach to code doesn’t

require us to understand the details of its syntax and semantics: instead, we pay attention.

While writing this, I looked for patterns I recognized and wrote down keywords in an

attempt to wheedle the compiler to tell me something new, working at the whims of a program

that told me if I was right or wrong. I didn’t understand what each line does, but that doesn’t

matter—the result is a combination of machine desires and what I thought the code might look

like based on previous encounters with it. It becomes a practice based solely on style rather than

meaning, poetics over sense and reference. In poetry, Jakobson calls the subconscious

understanding of a word’s connotation (a “dark” or “light” or “heavy” or “cool” synesthetic

quality) “sound symbolism.”56 A similar phenomenon happens here—not based on the beauty of

any particular phrase in code, but a vague feeling of what might work, whose correctness is up to

the machine, ultimately, to decide.

56 Jakobson, “Closing Statement.”

Li 45

���

In part, this program is so unfamiliar because of the programming language it uses. Coq/Gallina,

a little-known functional programming language created primarily for the purpose of

proof-writing, lacks many of the control flow structures we take for granted in most

general-purpose programming languages. More esoteric programming languages (“esolangs,”

colloquially) exist. These languages were not made to be generally used, created for one specific

purpose in mind. Often that purpose is simply for fun. Esolangs disregard the functionality of

computers to create strange, purposefully opaque codes to write with. Unlike general-purpose

programming languages, which generally throw around a similar set of concepts (for loops, if

statements, function calls, structs…), esolangs tend to embrace weird syntax and symbols,

extended and impractical metaphors, and jokes. They’re languages that exist for the sake of

existing, for the joy of having been imagined.

One of my favorite esolangs is HOtMEfSPRIbNG, or HOMESPRING, which stands for

“Hatchery Oblivion through Marshy Energy from Snowmelt Powers Rapids Insulated but Not

Great.”57 HOMESPRING takes the programming concept of “streams” and takes the

metaphor—streams of data to literal streams—to its extreme, pushing all of its language features

into an analogy of salmon swimming up a river. One theoretical program written in

HOMESPRING looks like this:58

universe bear hatchery Hello,. world!.
powers marshy marshy snowmelt

This program prints out the words “Hello, world!”, then exits. An equivalent program in Python

would simply read,

58 An example taken from Binder, ibid.

57 Binder, “Homespring.”

Li 46

print("Hello, world!")

The Python program is short and to the point. HOMESPRING ignores this easy transparency and

dives into the joke of its stream-based metaphor. In a “tutorial” for the language, Binder writes

another version of the “Hello, world!” program, noting that “this program is functionally

equivalent, but it looks like a strange poem. That is considered a Good Thing is [sic] HS terms”:

Universe of bear hatchery says Hello. World!.
It powers the marshy things;
the power of the snowmelt overrides.

Complicating and slowing down programs for aesthetics is encouraged by the language, wanting

the programs written to look like natural language. This complication actively makes it more

difficult to read and write this language, existing purely because it can. HOMESPRING is

primarily a joke, but it leaves ample room for writerly styles. Outside of a handful of reserved

words (“bear,” “hatchery,” “oblivion,” and the like), HOMESPRING allows any word to be

written in the program. In the snippet above, most of the words aren’t accounted for by the

HOMESPRING language. “of,” “says,” “Hello World!”, “It,” “the,” “things,” “power,”

“overrides.” only serve as embellishment. Their addition complicates the structure of the

program, requiring more thought from the programmer to arrange the actual keywords to make

the program work properly. Because of these complexities, and its differences from most

widely-used programming languages, HOMESPRING was not meant to be understood or

written. It’s hopelessly difficult to understand what any HOMESPRING code is doing by only

reading it, let alone attempt to write it yourself. Serving little to know practical use,

HOMESPRING serves as a rhetorical dig at general-purpose programming languages, satirizing

commonly-used language surrounding the advancement of technology.

HOMESPRING’s utter uselessness is a stylistic choice as much as the literal aesthetics of

its code is. In its standard, the document that defines exactly what each term in the programming

Li 47

language means, HOMESPRING pokes fun at the constant need for technology to move forward

and improve on itself.59 Binder calls HOMESPRING’s unyielding commitment to the stream

metaphor “metaphor-oriented programming,” and demands the reader to “learn it now or be left

behind! Your current favorite language stands no chance!” Technology so often forces itself

onward into the future, growing bigger with no concerns about how much space is being taken

up. HOMESPRING mocks this constant cycle of growth by claiming metaphor-oriented

programing as “revolutionary” even as it shows off the impracticality of this commitment.

Metaphor, HOMESPRING claims, is a commonly used tool in programming languages to

build up abstractions. Abstractions offer shorthands for commonly encountered patterns in

programming. A procedure described in many lines of code can be named—that shorter name

stands in for the whole procedure, allowing it to be used more easily, over and over, where that

code is needed. If I had some lines of code that put boots onto a cat, abstraction would allow me

to argue that the code could also be applied to dogs, since dogs are also four-legged. Abstraction

structures programs, threading repetition throughout a piece of code. That repetition has the

power to decide that one thing is like another. To jump much further back, the example of the

regular expression for recognizing email addresses is also an abstraction. We assume that every

person who fills out the form has an email. We assume that an email is structured in a particular

way. This bit of code that applies to cats can also be used for dogs because they all have four

feet—does that mean that code that applies to me will apply to you, because we both have names

and emails? To critique the dangers of relying too heavily on abstraction, HOMESPRING

cheekily leans into metaphor. Everything attempts to map back onto objects along a stream:

bears, sources of electricity, shallows and rapids, snowmelts. But meaning fails because

59 Binder, “Homespring-2003 Official Language Standard.”

Li 48

abstraction is incomplete, good at generalizing but bad at handling corner cases. Many things in

programming are not like a river at all. HOMESPRING’s abstraction makes it actively,

purposefully more difficult to code in it.

However, when we lean back and don’t try to understand what’s happening in this

code—as a programming language or even as English text—we’re still left with some feeling of

what this language was meant to invoke. The code above sketches out a river, one with a bear

and a salmon hatchery and a power generator and a snowmelt and marshes. It captures an image,

however strange and disjointed, of a waterway at which these human and animal needs meet.

Fish for water, humans for electric power, bears for food, snowmelt for movement. Because

HOMESPRING allows arbitrary text along with these keywords, we’re able to construct

programs with as much of it as we want, letting code take up more space, and flower to tell a

more coherent story. HOMESPRING may not be comprehensible, but it is beautiful and

attention-catching—its bizarre syntax stands out among so many languages with the same

handful of keywords.

This particular aesthetic comes at a practical cost even beyond reader and writer

overhead. HOMESPRING runs slowly, taking much longer than most other languages just to do

single-digit addition. Code that goes against the norms of programming often gives up

optimization for its poetics. It takes up space, works slowly, makes your machine’s fans spin up

and him. Kate Compton’s zine, “Opulent Artificial Intelligence,” pokes fun at the invisibility we

demand from computational systems:

“But do so UNOBTRUSIVELY. Do so UNSEEN. Never, never, make yourself a

spectacle. They do not wish to see you or talk to you. You are just here to do work.”

“….Oh, and can you do it faster and with less resources?”

Li 49

HOW DREADFUL

lets make her FABULOUS!60

Compton offers a computation that refuses to hide in the background, that’s aware of the space

it’s taking up and loves it. This computation is materially tangible, drawing attention to its own

medium. It works against needs for speed and easy digestibility, valuing aesthetics and poetics

just as much as, or more than, functionality. The material effects of this code are effective just as

glitches are, take up more space than necessary, drawing attention to itself as software. Code

that’s excessively complex often churns out “bad” software when compiled because the machine

has trouble understanding, stuttering as it tries to parse what’s been written. By making software,

and the code behind it, visible, we draw attention to what would seek to become naturalized and

static. This shift in attention forces us to look at the aesthetics of computation and computational

writing, drawing us once again to style. Much of this code is impractical and useless to capitalist

logics that seek conformity and speed—logics deeply intertwined with white, cishetero,

colonialist normativity.

���

If Lopes defines programming style as the particular restraints set on a program by a problem,

programming language, and/or hardware, then a queer code practice grabs at the edges of those

restraints, questioning the boundaries of what’s possible with code. It wriggles into gaps between

what we intended and how we imagined something to work, and what can actually be done. Both

code and poetry by nature further restrict the language we can use—so we arrive back at the

epitaph of the first chapter, finding that “decoding a poem is not always easy, its meaning often

remaining elusive. Poem-ing code to the contrary goes automatically, like magic.”61

61 Weille, “This Code = this code.”

60 Compton, “Opulent Artificial Intelligence.”

Li 50

We poem our code, embracing queer poetics that care less for functionality and more for

flair and nonsense. Jakobson defines code (in a linguistics context) as the shared language

between the speaker and the addressee, one that needs “metalingual” commentary to check if

both conversants are on the same page.62 In code, that metalanguage is disturbingly stable

because of the formal and fixed semantics of a programming language. But those semantics are

also alarmingly unstable, counterintuitively, because of their precision. Human language is

flexible, carrying varying connotations, context, and meanings; our understandings bubble over,

tugging at those neat definitions. We hold onto multiple meanings at once, try to keep them from

mixing, ultimately fail. We were not meant to be that kind of precise—so code becomes both

painfully accurate and absolutely incomprehensible. Holding onto both sides of that paradox,

queer code grapples for multivalence and excess, for stuff you thought you could wrap your

mind around but ultimately don’t. And that’s fine. We sit in that unknowing (with machines, with

each other, with ourselves) together.

62 Jakobson, “Closing Statement.”

Li 51

bibliography

Arawjo, Ian. “To Write Code: The Cultural Fabrication of Programming Notation and Practice.”

In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems,

1–15. CHI ’20. New York, NY, USA: Association for Computing Machinery, 2020.

https://doi.org/10.1145/3313831.3376731.

Becker, Brett A., and Thomas Fitzpatrick. “What Do CS1 Syllabi Reveal about Our Expectations

of Introductory Programming Students?” In Proceedings of the 50th ACM Technical

Symposium on Computer Science Education, 1011–17. SIGCSE ’19. New York, NY,

USA: Association for Computing Machinery, 2019.

https://doi.org/10.1145/3287324.3287485.

Binder, Jeff. “Homespring.” Webpage, 2003. http://jeffreymbinder.net/misc/hs/hs.html.

———. “Homespring-2003 Official Language Standard,” 2003.

http://jeffreymbinder.net/misc/hs/hs.pdf.

Brock, Kevin. Rhetorical Code Studies: Discovering Arguments in and Around Code. University

of Michigan Press, 2019.

Camp, Tracy, W. Richards Adrion, Betsy Bizot, Susan Davidson, Mary Hall, Susanne

Hambrusch, Ellen Walker, and Stuart Zweben. “Generation CS: The Growth of Computer

Science.” ACM Inroads 8, no. 2 (May 2017): 44–50. https://doi.org/10.1145/3084362.

cárdenas, micha. Poetic Operations: Trans of Color Art in Digital Media. Duke University Press,

2022.

Chun, Wendy Hui Kyong. “On ‘Sourcery,’ or Code as Fetish.” Configurations 16, no. 3 (2008):

pp 299–324. https://doi.org/10.1353/con.0.0064.

“Clippy Lints.” The Rust Foundation, n.d.

https://rust-lang.github.io/rust-clippy/master/index.html.

https://doi.org/10.1145/3313831.3376731
https://doi.org/10.1145/3287324.3287485
http://jeffreymbinder.net/misc/hs/hs.html
http://jeffreymbinder.net/misc/hs/hs.pdf
https://doi.org/10.1145/3084362
https://doi.org/10.1353/con.0.0064
https://rust-lang.github.io/rust-clippy/master/index.html

Li 52

Compton, Kate. “CASUAL CREATORS: DEFINING a GENRE OF AUTOTELIC

CREATIVITY SUPPORT SYSTEMS.” PhD thesis, University of California, Santa Cruz,

2019.

———. “Opulent Artificial Intelligence: A Manifesto.” Digital zine, 2017.

http://galaxykate.com/pdfs/galaxykate-zine-opulentai.pdf.

Crichton, Will. “The Usability of Ownership.” arXiv, 2020.

https://doi.org/10.48550/ARXIV.2011.06171.

Elden, Effy. “Genders.WTF.” Webpage, n.d.

https://web.archive.org/web/20230225160200/https://genders.wtf/.

Gass, William. “The Aesthetic Structure of the Sentence.” In Life Sentences. Random House,

2012.

Gilling, Joseph. “Haunted by the Glitch: Technological Malfunction - Critiquing the Media of

Innovation.” In 10th International Conference on Digital and Interactive Arts. ARTECH

2021. New York, NY, USA: Association for Computing Machinery, 2021.

https://doi.org/10.1145/3483529.3483667.

Glissant, Édouard, and Betsy Wing. “Concerning the Poem’s Information.” In Poetics of

Relation. University of Michigan Press, 1997.

Hayles, N. Katherine. “My Mother Was a Computer.” University of Chicago Press, 2005.

Jakobson, Roman. “Closing Statement: Linguistics and Poetics.” In Style in Language, edited by

Thomas A Sebeok. The Technology Press of Massachusetts Institute of Technology; John

Wiley & Sons, Inc., 1960.

Keyes, Os. “Counting the Countless.” Real Life, April 2019.

https://reallifemag.com/counting-the-countless/.

Lopes, Cristina Vidiera. Exercises in Programming Style. 2nd ed. Routledge, 2020.

http://galaxykate.com/pdfs/galaxykate-zine-opulentai.pdf
https://doi.org/10.48550/ARXIV.2011.06171
https://web.archive.org/web/20230225160200/https://genders.wtf/
https://doi.org/10.1145/3483529.3483667
https://reallifemag.com/counting-the-countless/

Li 53

Matsakis, Niko, Mark Rousskov, Aidan Hobson Sayers, Ashley Williams, and Nick Cameron.

“RustConf 2020 - Opening Keynote,” 2020.

https://www.youtube.com/watch?v=IwPRu5FhfIQ.

McKenzie, Patrick. “Falsehoods Programmers Believe about Names.” Blog post, 2010.

https://www.kalzumeus.com/2010/06/17/falsehoods-programmers-believe-about-names/.

Muñoz, José Esteban. “Queerness as Horizon: Utopian Hermeneutics in the Face of Gay

Pragmatism.” In Cruising Utopias: The Then and There of Queer Futurity. NYU Press,

2009.

Musser, Amber Jamilla. “Introduction: Brown Jouissance and Inhabitations of the Pornotrope.”

In Sensual Excess: Queer Femininity and Brown Jouissance. NYU Press, 2018.

Parrish, Allison. “Language Models Can Only Write Poetry,” 2021.

https://posts.decontextualize.com/language-models-poetry/.

Pereira, Rui, Marco Couto, Francisco Ribeiro, Rui Rua, Jácome Cunha, João Paulo Fernandes,

and João Saraiva. “Energy Efficiency Across Programming Languages: How Do Energy,

Time, and Memory Relate?” In Proceedings of the 10th ACM SIGPLAN International

Conference on Software Language Engineering, 256–67. SLE 2017. New York, NY,

USA: Association for Computing Machinery, 2017.

https://doi.org/10.1145/3136014.3136031.

Resnick, Pete. “RFC 5322 - Internet Message Format.” Website; Internet Engineering Task

Force, Network Working Group, n.d.

https://datatracker.ietf.org/doc/html/rfc5322#section-3.4.1.

“Rust Survey 2021 Results.” Webpage; Rust Survey Team, 2022.

https://blog.rust-lang.org/2022/02/15/Rust-Survey-2021.html.

Schapiro, Meyer. “Style.” Anthropology Today, 1953.

https://www.youtube.com/watch?v=IwPRu5FhfIQ
https://www.kalzumeus.com/2010/06/17/falsehoods-programmers-believe-about-names/
https://posts.decontextualize.com/language-models-poetry/
https://doi.org/10.1145/3136014.3136031
https://datatracker.ietf.org/doc/html/rfc5322#section-3.4.1
https://blog.rust-lang.org/2022/02/15/Rust-Survey-2021.html

Li 54

“Stack Overflow Developer Survey 2022.” Webpage, 2022.

https://survey.stackoverflow.co/2022.

Strunk, William, Jr, and E. B. White. The Elements of Style. Fourth. Allyn & Bacon, 2000.

Sullivan, Patrick. “An Essential Question: What Is "College-Level" Writing?” Edited by Patrick

Sullivan and Howard Tinberg, 2006.

Vee, Annette. “Introduction: Computer Programming as Literacy.” In Coding Literacy. MIT

Press, 2017.

Vermeulen, Allan, Scott W. Ambler, Greg Bumgardner, Eldon Metz, Trevor Misfeldt, Jim Shur,

and Patrick Thompson. The Elements of Java Style. Cambridge University Press, 2000.

Wall, Cheryl A. “Prologue: Moving from the Margins.” In On Freedom and the Will to Adorn:

The Art of the African American Essay. University of North Carolina Press, 2018.

http://www.jstor.org/stable/10.5149/9781469646923_wall.5.

Watson, Cecelia. “Introduction: Love, Hate, and Semicolons.” In Semicolon: The Past, Present,

and Future of a Misunderstood Mark. ECCO, 2019.

Weille, Jan de. “This Code = this code.” Artist's statement. In Taper. 7. Bad Quarto, 2021.

https://survey.stackoverflow.co/2022
http://www.jstor.org/stable/10.5149/9781469646923_wall.5

